Author Affiliations
Abstract
Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China
A hollow-core fiber based on photonic quasicrystal arrays is theoretically proposed for high-quality light wave propagation with high polarization maintaining performance and low nonlinearity. This fiber, called hollow-core photonic quasicrystal fiber (HC-PQF), can simultaneously realize a high birefringence that reaches 1.345 × 10?2 and a small nonlinear coefficient of 1.63 × 10?3 W?1·km?1 at a communication wavelength of 1.55 μm due to the air-filled core and unique quasiperiodic fiber structure. To further demonstrate the controllability of the nonlinear coefficient and the application of sensor and polarization-maintaining fiber, the nonlinearity is investigated by filling different inert gases in the fiber core while the birefringence keeps a high order of 10?2. In the wavelength range λ ∈ [1.53 μm, 1.57 μm], the dispersion is near zero and flattened. The HC-PQF is expected to be used for applications in optical communication, high power pulse transmission, polarization beam splitters, etc.
fiber optics fibers polarization maintaining photonic crystal fibers 
Chinese Optics Letters
2020, 18(3): 030603

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!